

VUmc Cancer Center Amsterdam

Rubina Baglio

Irene Bijnsdorp

Jan vd Weering

Elisa Giovannetti

Michiel Pegtel

Tom Wurdinger

Connie Jimenez

Renee Musters

EV/ Exosome Proteomics VUmc

Clinical Proteomics @VUmc

Connie Jimenez, c.jimenez@vumc.nl

www.oncoproteomics.nl

EV/ Exosome Proteomics VUmc

- EV proteome analysis of biomarker-rich proximal fluids:
 - Cancer cell & tumor tissue microenvironment (secretome)
 - Urine, CSF
- Novel HTP EV capture method bench-marked against ultracentrifugation for EV proteomics → HSP EV peptide capture method enables global exosome proteomics

Knol, Jiménez et al. **Peptide-mediated 'miniprep' isolation of extracellular vesicles is suitable for high-throughput proteomics.** EuPA Open Proteomics Volume 11, June 2016, Pages 11–15

Bijnsdorp, Jimenez et al. **Feasibility of urinary extracellular vesicle proteome profiling using a robust and simple, clinically applicable isolation method.** *J Extracell Vesicles.* 2017; 6(1):1313091.

On-going: Large-scale application to urine of prostate cancer patients

EV/ Exosome Proteomics VUmc

EV proteomics pilot on Alzheimer's disease CSF

SORL1 TARDBP TREM2

Prostate cancer EV research Department of Urology, Irene Bijnsdorp

worldwide

1. Proteomics profiling or urinary EVs:

- Diagnostic & prognostic testing - Developed a clinical applicable urinary EV-capture method - Bijnsdorp et al, J Extracell Vesicles, 2017 - Large biobank: urine and blood sample collection - Current: validation of markerpanel

2. Biological role of prostate cancer EVs in metastasis:

- Focus on preventing bone metastasis - Mouse studies demonstrated that cancer EVs influence early metastasis: formation and type of bone metastases

Early metastasis formed

PC3-ctrl miR-A miR-B miR-C

8-

Predictive and monitoring biomarkers are essential to guide patient therapy in pancreatic cancer

→ Find predictive and monitoring miRNAs

Circulating microRNAs as dynamic biomarkers of response to treatment with FOLFIRINOX combination therapy in advanced pancreatic ductal adenocarcinoma. Laura L Meijer, Adam E Frampton, Ingrid Garajová, Chiara Caparello, Tessa Y S Le Large, Niccola Funel, Enrico Vasile, Justin Stebbing, Jonathan Krell, Geert Kazemier, Elisa Giovannetti <u>http://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(17)30464-6.pdf</u>

Cancer Center Amsterdam

miR-29a is significantly upregulated in EVs after treatment in non-progressive patients

→ Validation to explore the monitoring potential → Functional experiments

Circulating microRNAs as dynamic biomarkers of response to treatment with FOLFIRINOX combination therapy in advanced pancreatic ductal adenocarcinoma. Laura L Meijer, Adam E Frampton, Ingrid Garajová, Chiara Caparello, Tessa Y S Le Large, Niccola Funel, Enrico Vasile, Justin Stebbing, Jonathan Krell, Geert Kazemier, Elisa Giovannetti <u>http://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(17)30464-6.pdf</u>

Cancer Center Amsterdam

ERG Research

- Small RNA sorting into EVs and functional transfer
- Pegtel et al., PNAS 2010
- Koppers-Lalic et al., Cell Reports 2014
- Viral RNAs and EVs in autoimmunity
- Pegtel PNAS 2014
- Baglio et al., PNAS 2016
- Van Dongen et al., MMBR 2016
- EV small RNAs for Liquid biopsy approaches
- Van Eijndhoven et al., JCI insight 2016
- Exosome biogenesis and release
- Verweij et al., EMBO 2011
- Verweij & Bebelman et al., JCB accepted
- Baglio group: EVs in the tumor-microenvironment
- Baglio et al., Clin Canc Res 2017

Integratie beeldvorming & moleculaire analyse voor een complete diagnose

FDG-PET

End of

treatment;

t=7 months

At presentation; t=0 months

Follow up; t=9 months

relative decrease

Van Eijndhoven et al., JCI insight 2016

Development of reporter for visualization of exosome release from living single cells

CD63-pHluorin

- pHluorin: pH-sensitive GFP variant
- Fused in 1st extracellular loop of

Cancer cells contain hundreds of acidic vesicles (MVBs) that contain CD63-Phluorin

Tumor microenvironment and inflammation: Preclinical mouse models to define cancer EV-induced alterations of the tumor microenvironment

- Bone cancer cells release EVs that "educate" mesenchymal stem cells (MSC) to favor cancer growth and lung metastasis formation
- Alterations of the MSC cytokine expression profile can be revoked using anti-inflammatory agents in xenograft models

Baglio et al. Clin Cancer Res, 2017

Tumor microenvironment and inflammation: Preclinical mouse models to define cancer EV-induced alterations of the tumor microenvironment

BESTRI

Using in vivo tumor models and next-generation techniques we aim to:

- Globally define the **immune profile alterations** induced by cancer EVs
- Evaluate the efficacy of specific combinations of **immunomodulatory drugs** to block the pro-metastatic effects of cancer EVs
- Identify circulating EV-associated biomarkers for treatment response prediction

www.werkenbijvumc.nl